硬化しない高粘性の可塑状充填材注入工法

●概 要

クレーショック工法は、A 液のクレーサンド TAC- β (β II)溶液とB 液の特殊水ガラス TAC-3G を比例混合することで生成される 300~500dPa·s の硬化しない高粘性の可塑状充填材注入工法です。

本工法は、シールド急曲線施工の余掘り部崩壊防止のみならず、切羽の安定、沈下防止、噴発・逸 泥防止、シールド機姿勢制御、発進・到達時の止水等への有効な工法として多用されています。

クレーショック工法 配合例(1.05m3当り)

TAC- β 使用配合

TAC- *β* Ⅱ 使用配合

A液(B液				
クレーサンド	水	特殊水ガラス			
TAC−β		TAC-3G			
520kg(495kg)	800L(762L)	50L(48L)			

A液(A液(1m³)		
クレーサンド	水	特殊水ガラス	
TAC-β II		TAC-3G	
384kg(366kg)	853L(812L)	50L(48L)	

()内はクレーショック1m3当り配合

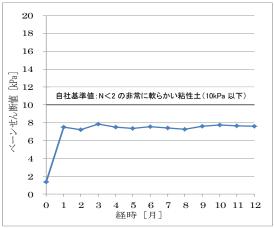
① A液·B液混合搅拌

② クレーショック生成

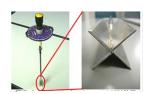
③ 分銅 1kg 裁荷状況

●お客様のメリット

- 1)シールド急曲線施工の場合
- シールド機内から施工するクレーショック工法は、急曲線の余掘り発生と同時にクレーショックを 充填するので、余掘り部の崩壊防止と切削土のチャンバー内への押戻しによって、確実な余掘 り空間が形成でき、急曲線の線形確保が図れます。
- クレーショックの充密性・安定性・摩擦抵抗力低減効果によって、急曲線を通過する際のシールド機周辺地山の緩みを防止でき、周辺環境への影響抑制(沈下防止)が図れます。
- 地上からの削孔・注入作業(車両片側通行・夜間作業等)が不要で、周辺環境への影響がなく、 施工性が向上します。また、埋設物への影響や地盤隆起の問題が無く、安全性も向上します。
- 2) 切羽の安定、沈下防止、噴発・逸泥防止、シールド機姿勢制御、発進・到達時の止水等の場合
- 泥土圧シールドの切羽の土圧低下や地下水の噴発時にチャンバー内へクレーショックを充填することによって、噴発を防止し切羽の土圧保持が可能です。また、シールド再発進も容易です。
- 土質の急変等による掘削土の過剰取込み時には、シールド機注入孔からクレーショックを加圧・ 充填することによって、シールド機通過(裏込め注入)までの周辺の地盤変位を抑止します。
- 軟弱粘性土等での掘進ではシールド機がノーズダウンする場合があります。クレーショックをシールド機下部から注入することによって、シールド機のピッチングを上げることが可能です。


●特 徴

クレーショック(TAC-β)の性状・性能および長期安定性試験の結果は次のとおりです。


- 1) 比重、粘性ともに大きく、岩塊沈降試験でも 1kg の分銅を保持する能力を有し、沈下防止・地山崩壊防止効果が有ります。【比重:1.32、粘性:300dPa·s、ベーンせん断:0.68kPa】
- 2) 水希釈抵抗、遮水性能が有ります。【ゲルタイム:11 秒、水希釈抵抗:12 時間後も希釈せず】
- 3) 12 ケ月間の性状変化(硬化)はなく、長期安定性に優れています。

【ベーンせん断値の経時変化(下図): 直後は 1.36kPa であるが、それ以降の 12 ケ月間のベーンせん断値の経時変化はほとんどなく、7.23~7.86kPa である(自社基準値: 10kPa 以下)。】

ベーンせん断試験機

ベーンせん断試験

●主な施工実績(2025年1月現在)

施工	発 注 者	工事名	施工場所	シールド	クレーショック工法
着手年	光工省	工 ず 石	旭工物加	外径(mm)	採用目的
2024	大阪府	一級河川寝屋川加納元町調 節池築造工事(R4 本体工)	大阪府	7,280	発進時(仮壁切削)のチャンバー内土 圧保持、ノーズダウン抑制
2024	東海旅客鉄道㈱	中央新幹線第一首都圏トンネ ル新設(梶ヶ谷工区)	神奈川県	14,040	2 号機大断面·大深度急曲線(R= 82.9m、CL≒70m)
2020	東京都	駒形幹線工事	東京都	4,440	急曲線補助工法(R=20m×4 箇所、 R=40m×2 箇所)
2017	高知市	送水幹線二重化(5 工区)管渠 築造工事	高知県	2,030	発進時(仮壁切削)のチャンバー内土 圧保持、ノーズダウン抑制、急曲線補 助工法
2016	日本下水道事業団	市川市市川南 7 号幹線建設 工事	千葉県	4,660	急曲線補助工法 (R=15m×2 箇所、40m)
2015	大阪市	国道 479 号清水共同溝設置 工事-4	大阪府	5,130	小土被りでの沈下抑制
2015	横浜市	神奈川処理区神戸雨水幹線 下水道整備工事(その2)	神奈川県	2,150	軟弱地盤での沈下抑制
2012	阪神高速道路㈱	大和川線シールドンネル工事	大阪府	12,470	南海電車通過時の沈下抑制および 長期停止後の再発進時のフリクション カット
2012	中国四国農政局	吉野川下流域農地防災事業 北部幹線(大寺工区)建設工事	徳島県	2,880	河川横断での沈下抑制
2010	日本下水道事業団	東京都勝島ポンプ所流入管渠 工事	東京都	10,100	急曲線補助工法 (R30m×4 箇所)
2010	大阪府	都市計画道路 大和川線 シールド工事	大阪府	12,540	地下鉄御堂筋線通過時の沈下抑制 および加泥注入
2010	高松市	中部バイパス第3幹線工事	香川県	2,880	電気鉄道通過時の沈下抑制および 急曲線補助工法

●技術登録

1) 旧 NETIS 登録番号:KT-160022-A

2) NNTD 登録番号: 1162

お問い合せ先(本社) 〒709-0223 岡山県備前市吉永町南方 1073 番地 http://www.tac-co.com TEL 0869-84-2069 FAX 0869-84-3288