コーン指数の推定方法

ベーンせん断試験結果からコーン指数を推定

●概 要

シールド工事における発生土は、ダンプトラックにて搬出することが一般的です。 この際、発生土のコーン指数が200kN/m²以下(目安として、標準仕様ダンプトラックに山積みができず、またその上を歩けない状態)のとき、建設汚泥として取扱う必要があります【建設廃棄物処理指針(平成22年度版)、環廃産第110329004号、環境省】。

そのため、日常管理として発生土のコーン指数を測定する必要があります。しかし、コーン指数測定には、コーンペネトロメータ、モールド、ランマーといった重厚な測定機器を使用して通常は 2 名で測定しなければなりません。

特に粘性土においては、発生土が柔らかくなる特性から汚泥となり易く、日々の管理は一層大事となります。そこで、試験方法が容易なベーンせん断試験機を用いたせん断強度と従来のコーン指数を測定し、その相関性を元にコーン指数の目安を推定する方法を考案しました。

●お客様のメリット

- ベーンせん断試験方法を用いることで、所定の方法(JIS A 1228:締固めた土のコーン指数試験方法)での測定に比べ、煩雑な手順と試験にかかる時間を大幅に短縮できます。
- 試験機器数が少なく、持ち運びや保管が容易で、省力化にもなります。

従来	方法	考案方法		
コーンペネトロメータ	測定状況	ベーンせん断試験機	測定状況	
			Trans.	

<手順> JIS A 1228 に準ずる

- 1.モールドに土砂(発生土)を入れる。
- 2.ランマーを用いて3層に分けて各層25回突き固める。
- 3.コーンペネトロメータを 1cm/秒で貫入させ、貫入 量 5cm·7.5cm·10cm のときの貫入抵抗力を平 均し、平均貫入抵抗力を求める。
- 4.平均貫入抵抗力をコーン先端底面積で除する。

$$qc = \frac{Qc}{A} \times 10$$

qc:コーン指数 (kN/m²)

Qc:平均貫入抵抗力(N)

A:コーン先端の底面積 (cm²)

<手順>

- 1.モールド(または1L 容器)に土砂(発生土)を入れる。
- 2.ベーンせん断試験機を用いて、最大トルクを測定する。
- 3.最大トルクとベーンの羽根の形状から、せん断強 度を計算する。(土質調査法より)

$$\mathbf{M}_{\text{max}} = \tau \left[\pi \left\{ DH \cdot \frac{D}{2} + 2 \left(\frac{D}{2} \right)^2 \cdot \frac{2}{3} \cdot \frac{D}{2} \right\} \right]$$

$$\therefore \tau = M_{\text{max}} / \left\{ \pi \left(\frac{D^2 H}{2} + \frac{D^3}{6} \right) \right\}$$

 τ :ベーンせん断強度(N/m 2 [=Pa])

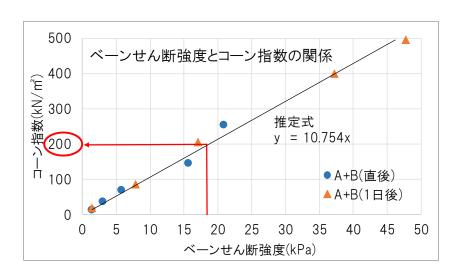
M_{max}: 最大回転モーメント (N·m)

D:ベーン直径 (m)

H:ベーン高さ (m)

●特 徴

高密度可塑状充填材のクレーショックハードを用いて、水量を段階的に減少させる等の配合変更で、 人工的に粘性土相当の模擬土を作成することができます(下表配合例)。


この模擬土を用いてベーンせん断試験機を用いたせん断強度と従来のコーン指数を測定し、その 相関性によって粘性土でのコーン指数の推定を可能としました。

・模擬土(粘性土)の配合例

	A 液(1m³)				B 液	比	全
	TAC ソリディ	TAC-β	TAC-R15	水	TAC-3G	A 液	A+B 液
配合①	800 kg	300 kg	5 kg	584 L	50 L	1.69	1.67
配合②	900 kg	320 kg	5 kg	540 L	55 L	1.76	1.74
配合③	1000 kg	380 kg	5 kg	480 L	60 L	1.86	1.84
配合④	1100 kg	360 kg	6 kg	450 L	65 L	1.91	1.88
配合⑤	1150 kg	410 kg	8 kg	410 L	70 L	1.98	1.94

·測定例

		配合①	配合②	配合③	配合④	配合⑤
A+B (直後)	コーン指数 (kN/m²)	14.3	38.1	71.3	147.8	256.8
	ベーンせん断強度 (kPa)	1.26	2.90	5.63	15.52	20.80
A+B (1 日後)	コーン指数 (kN/m²)	19.1	85.6	205.0	399.4	495.7
	ベーンせん断強度 (kPa)	1.41	7.84	17.05	37.17	47.74

配合例でのベーンせん断強度とコーン指数は、概ね比例関係にあることがわかります。 したがって、ベーンせん断試験機を用いてコーン指数(目安)の推定が可能であると考えます。 なお、実施工においては、実際の発生土(粘性土)を用いての相関性の確認が必要です。 また、土質が著しく変化する場合には、従来のコーン指数測定での確認が必要と考えます。

