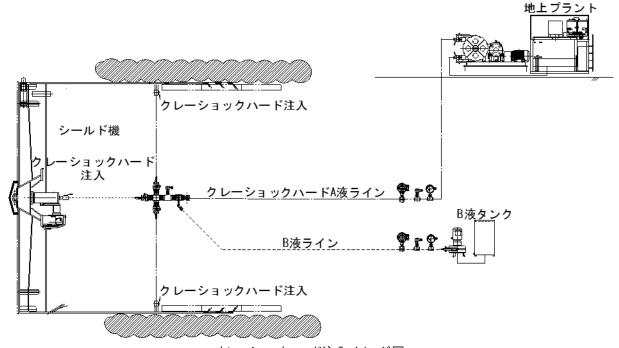
クレーショックハード

裏込め注入材をベースとした 2 液式の硬化するクレーショック

●概 要

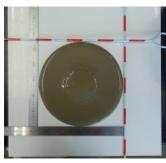
硬化しない可塑状充填材であるクレーショック(NETIS:KT-160022-A)は、シールド発進・到達時のチャンバー内充填、急曲線の余掘り部充填、シールド外周部の摩擦低減や止水対策、滞水砂礫層部の噴発防止および掘削添加材補助等、シールド工事の充填材として、様々な用途に多用されています。


クレーショックハードは、2液混合後にはクレーショックと同等の粘性を有しており、経時とともに徐々に強度が発現し、最終的には地山相当強度まで増進して硬化します。

A 液(1000L)					B 液
硬化材	助材	安定剤	水	ゲル化促進剤	塑強調整剤
タックメント	TAC-βII	TAC-Re	清水	TAC ゲル	TAC-3G
75 kg	75 kg 200 kg 5 0 kg 205 l		1∼5 kg	50 L	
75 kg	200 kg	5.0 kg	895 L	_	20 L

クレーショックハード配合 1.05m3 当り

●特 徴


- 裏込め注入材と同等のゲルタイム(15 秒以内)とクレーショックと同等の粘性(300dPa·s 以上)を併せ持ち、地盤とシールド外周の間隙を完全に充填します。
- 〇 硬化材を配合することにより止水性を向上させるともに、裏込め注入材の 1 時間強度 (0.1N/mm²)程度を保持します。
- 土砂と混合した場合にも、不透水層が形成でき、チャンバ内止水性の向上にも効果的です。
- 〇 通常の 2 液式の裏込め注入材をベースとしているため、通常のプラントにおいても硬化材の使用量および TAC- β II 溶液の移送量を調節することで、簡単に使用することができます。
- ゲル化促進剤の TAC ゲルにより、ゲルタイムを自在に調整することができます。

クレーショックハード注入イメージ図

クレーショックハード性状例

ケース			B 液 20 L		
		TAC ゲル TAC ゲル TAC ゲル		TAC ゲル	
		無添加	1kg/m³ 2kg/m³		無添加
フロー値	直後	390×390	340×340	320×320	390×390
(mm)	1日	日 380×380 320×320 300×300		380×380	
ゲルタイム(秒)		60 秒	30 秒	15 秒	15 秒
A 液+B 液粘性 (dPa·s)		300~350			100
	1日	0.03~0.06			0.012
一軸圧縮強度 (N/mm²)	3日		0.012		
	7日		0.012		
	28 日		0.012		

粘性測定

一軸圧縮強度測定

土砂とクレーショックハードの混合性状

ケース	B液50 L B液20 □			
	1日	0.08	0.02	
一軸圧縮強度	3 日	3 日 0.10		
(N/mm^2)	7 日	0.11	0.05	
	28 日	0.14	0.06	
透水係数 (m/s)	24H 後	2.35×10^{-7}	4.86×10^{-7}	
参考:土砂単体透水係数(m/s)		1.10×10^{-4}		

※土砂(購入砂):クレーショックハード=70:30(体積比)

透水試験実施状況

●主な施工実績(2025年1月現在)

施工 着手年	発 注 者	工事名	施工場所	シールド 外径(mm)	クレーショックハード工法 採用目的
2024	東京都		東京都	3,780	マシン修理後の前面の空隙の埋め戻し
2024	沖縄総合事務局	令和 4 年度小禄道路ボックス カルバート工事	沖縄県	_	パイプルーフとの置き換え充填
2023	鉄道·運輸機構	北海道新幹線、羊蹄トンネル (比羅夫)他(SENS 工法)	北海道	11,500	岩塊除去拡幅埋め戻し
2023	西日本旅客鉄道㈱	東岡山駅付近 Bv 新設他 1 工事	岡山県	_	沈下抑制
2022	NEXCO	新名神高速道路 美濃山中工事	京都府	_	ボックスカルバート余堀充填
2020	Singapore PUB	DTSS2 T10	Singapore	4,845	ビット交換時マシン外周止水対策

●技術登録:「トンネル止水工法、トンネル止水システム、及び止水材」

1) 特許第6632018号

